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Allenes are a class of compounds with unique reactivities due
to the existence of the two orthogonalbonds, and they have
been found to be very useful intermediates in organic synthesis.
Among our efforts in the area of allene chemistwye developed
an efficient one-step route to butenolides with potential biological
activities via the Pd(0)-catalyzed cyclization reaction of 1,2-allenic
carboxylic acids with aryl or 1-alkenyl halidé€sin this paper
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we give our results on the corresponding reaction of 2,3-allenols gcheme 2

(Scheme 1).

The groups of Olssdrand Marshaflhave shown that the Ag
catalyzed cyclization reaction of 2,3-allenols affords 2,5-dihy-
drofuran derivatives, while Tsuji and co-work&reported that
the Pd(0)-catalyzed reaction of 2,3-dienols with aryl or alkenyl
halides producegi-aryl- or alkenylg-methyl-a,f-unsaturated
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enones via an insertief-elimination mechanism (pathway a, h 3
Scheme 1). We are interested in the possibility of the Pd(0)-  entry conditions Yield (%) of3a +3a’ 3a/3a’‘
catalyzed reaction of organohalides and 2,3-allenols to form either 5 ;
2,4-disubstituted-2,5-dihydrofurans (pathway b, Scheme 1) or 2,3- ! K,CO;, Ag,CO, 67 18:1
disubstituted vinylic oxiranes (pathway ¢, Scheme 1). CH,CN, reflux, 18 h

In our first attempt, we synthesized 1,2-octadien-4-and 2 K,CO,,CH,CN, 62 14:1
studied its Pd(0)-catalyzed cyclization reaction with Phl under
various reaction conditions (Scheme 2). Luckily and surprisingly, reflux, 18 h
we observed in our first try the formation of thieee-membered 3 K,CO,, Ag,CO,, 33° 15:1
ring, i.e., 2-(2-phenylethenyl)-3+-butyl)oxirane3a, under the CH.CN. 65 °C. 18 h
conditions for the corresponding cyclization reaction of 1,2-allenyl
carboxylic acids (Scheme 29.The formation of the 2,5- 4. K,CO,, CHCN, 32¢ 20:1
dihydrofuran derivative was not observed, and the Aglt was 65°C, 18 h
not required (compare entries 1 with 2 and 3 with 4, Scheme 2).
After we screened several different reaction conditions, the > K.CO,, DMF, 7 30:1
stereoselectivity of formation of the two diastereocisomers was 55°C, 14 h

increased to 30:1 by using DMF as the solvent (compare entries
1-4 with 5, Scheme 2). The relative configuration of the major
isomer was established to heans as determined from the
NOESY spectra oBe (entry 5, Table 1).

Using conditions A (entry 5, Scheme 2) as the standard reaction
conditions, we studied the Pd(0)-catalyzed highly diastereoselec-tjye epoxide formation reaction carefully, and some of our typical
examples were listed in Table 1. The following points should be

aDetermined from 300 MHZH NMR spectra of the crude product
fore separation using GBIr; as the internal standarélisolated yield.
©23% of 1a was recoveredd 18% of 1a was recovereds This set of
reaction conditions is defined as conditions A.
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Table 1. Pd(0)-Catalyzed InsertierCyclization Reaction of
2,3-Allenol and Aryl or Alkenyl Halides

—. Conditions A R?
—r :>7R1 + R2|
HO ) V4 R!
1 3
1, 2, temp time yield
entry R! R? (°C) (h) product (%) dr
1 nCHg Ph 55 14 3a 71 96/4
2 nCiHg p-MeO-GHa 52 16 3b 71 97/3
3 nCiHy p-Me-GHs 53 16 3c 70 97/3
4 nCHy E-2-Ph-ethenyl 54 24 3d 65 92/&
5 n-CHg naphthyl 64 48 3e 76 96/4
6 Ph p-Me-CgHa4 52 16 3f 55 95/5
7 Ph p-MeO-GsH, 53 16 39 66 92/8
8 n-CiHis p-Me-CeH, 54 16 3h 88 97/3
9 n-GHis p-MeO-GHy 52 14 3i 81 99/1
10 n-CiHis p-Br-CeHs 56 48 3 80 98/2
11 n-CgHiz E-1-hexenyl 54 20 3k 59 ¢
12 n-CgHiz p-Me-GHa 54 16 3l 95 97/3
13 n-CgHiz p-MeO-GHa 54 16 3m 83 98/2
14 n-CgHiz Ph 58 18 3n 78 98/2
15 n-CgHiz p-Br-CeHs 56 18 30 46  99/F

a Diastereomer ratio; determined from 300 MM2 NMR spectra

of the crude products before separation. In all cases, except entries 4
and 7, the two isomers could not be separated via chromatography on

silica gel using the conditions described in this papdhe minor
isomer could be isolated by chromatography on silica @€ls isomer
not observed? The data were also confirmed by HPLCDetermined
from 400 MHz'H NMR spectrum.

epoxides for the synthesis afalkyl amino aldehydes and aciéls.
With our protocol for the highly diastereoselective synthesis of
trans-2,3-disubstituted vinylic epoxides in hand, we utilized the
highly enantioselective reduction of 1-undecyn-3-one to make
optically active R)-1-undecyn-3-ot? which can be easily con-
verted to the optically active R)-1,2-dodecadien-4-ol 1p)
(Scheme 3J.lts cyclization reaction with (&)-hexenyl iodide,
p-methylphenyl iodide, ang-methoxyphenyl iodide afforded
(RR)-3k, (R,R)-3l, and R R)-3m, respectively (Scheme 3).

In conclusion, we have developed a mild, good-yielding, and
highly diastereoselective methodology for the synthestsaofs-
2,3-disubstituted vinylic oxiranes. Using the readily available
chiral 2,3-allenols? the corresponding vinylic oxiranes with high
ee value can be synthesiz€d® Due to the wide synthetic
importance of vinylic oxiranes, this methodology will show its
utility in organic synthesis.
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